《正弦定理》教案

时间:2022-12-07 00:13:03
《正弦定理》教案

《正弦定理》教案

作为一位不辞辛劳的人民教师,就有可能用到教案,教案是保证教学取得成功、提高教学质量的基本条件。来参考自己需要的教案吧!以下是小编为大家整理的《正弦定理》教案,欢迎阅读,希望大家能够喜欢。

《正弦定理》教案1

高中数学正弦定理教案,一起拉看看吧。

本节内容是正弦定理教学的第一节课,其主要任务是引入并证明正弦定理.做好正弦定理的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力.

本节课以及后面的解三角形中涉及到计算器的使用与近似计算,这是一种基本运算能力,学生基本上已经掌握了.若在解题中出现了错误,则应及时纠正,若没出现问题就顺其自然,不必花费过多的时间.

本节可结合课件“正弦定理猜想与验证”学习正弦定理.

三维目标

1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法,会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.

2.通过正弦定理的探究学习,培养学生探索数学规律的思维能力,培养学生用数学的方法去解决实际问题的能力.通过学生的积极参与和亲身实践,并成功解决实际问题,激发学生对数学学习的热情,培养学生独立思考和勇于探索的创新精神.

重点难点

教学重 ……此处隐藏5498个字……应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

四、教法分析

依据本节课内容的特点,学生的认识规律,本节知识遵循以教师为主导,以学生为主体的指导思想,采用与学生共同探索的教学方法,命题教学的发生型模式,以问题实际为参照对象,激发学生学习数学的好奇心和求知欲,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化,并且运用例题和习题来强化内容的掌握,突破重难点。即指导学生掌握“观察——猜想——证明——应用”这一思维方法。学生采用自主式、合作式、探讨式的学习方法,这样能使学生积极参与数学学习活动,培养学生的合作意识和探究精神。

五、教学过程

本节知识教学采用发生型模式:

1、问题情境

有一个旅游景点,为了吸引更多的游客,想在风景区两座相邻的山之间搭建一条观光索道。已知一座山A到山脚C的上面斜距离是1500米,在山脚测得两座山顶之间的夹角是450,在另一座山顶B测得山脚与A山顶之间的夹角是300。求需要建多长的索道?

可将问题数学符号化,抽象成数学图形。即已知AC=1500m,∠C=450,∠B=300。求AB=?

此题可运用做辅助线BC边上的高来间接求解得出。

提问:有没有根据已提供的数据,直接一步就能解出来的方法?

思考:我们知道,在任意三角形中有大边对大角,小边对小角的边角关系。那我们能不能得到关于边、角关系准确量化的表示呢?

2、归纳命题

我们从特殊的三角形直角三角形中来探讨边与角的数量关系:

在如图Rt三角形ABC中,根据正弦函数的定义

《《正弦定理》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式