勾股定理的逆定理教案

时间:2022-10-25 13:10:51
勾股定理的逆定理教案8篇

勾股定理的逆定理教案8篇

在教学工作者开展教学活动前,常常要写一份优秀的教案,借助教案可以有效提升自己的教学能力。怎样写教案才更能起到其作用呢?以下是小编为大家整理的勾股定理的逆定理教案,仅供参考,希望能够帮助到大家。

勾股定理的逆定理教案1

一、教学目标

1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.

2.探究勾股定理的逆定理的证明方法.

3.理解原命题、逆命题、逆定理的概念及关系.

二、重点、难点

1.重点:掌握勾股定理的逆定理及证明.

2.难点:勾股定理的逆定理的证明.

3.难点的突破方法:

先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法.充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受.

为学生搭好台阶,扫清障碍.

⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角.

⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决.

⑶先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证.

三、课堂引入

创设情境:⑴怎样 ……此处隐藏7903个字……:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。

三、例习题分析

例1(P83例2)

分析:⑴了解方位角,及方位名词;

⑵依题意画出图形;

⑶依题意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30;

⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;

⑸∠PRS=∠QPR-∠QPS=45°。

小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。

例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。

分析:⑴若判断三角形的形状,先求三角形的三边长;

⑵设未知数列方程,求出三角形的三边长5、12、13;

⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。

解略。

四、课堂练习

1.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是。

2.如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?

3.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向

《勾股定理的逆定理教案8篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式